Affiliata al CONI
TECNICA
HOME
Recupero
Corretto dimensionamento per i grandi modelli

Nel lancio di un modello spaziale la parte più complessa non è quella ascendente ma quella discendente. Dopo il lancio il modello arriva all'apogeo e a quel punto inizia la preoccupazione di ogni modellista: uscirà il paracadute? Si aprirà? Avrò calcolato bene le forze in gioco?
Il sistema di recupero è una delle parti principali del modello, che non va mai sottovalutata in particolare quando le dimensioni ed i pesi sono elevati.
In questa sezione descriviamo come progettare il sistema di recupero dei grandi modelli in maniera corretta.

Progettazione per grandi modelli

Parte delle informazioni seguenti sono tratte da: "Richtiges Design von Bergungs-Systemen" di J.Thuering e da "Parachute Recovery Systems" di T.W.Knacke

Lo scopo fondamentale del sistema di recupero è raggiungere il compromesso tra portare il modello a terra abbastanza lentamente da non presentare nessun pericolo per sé o per altri, e non permettere che venga portato troppo lontano dal vento.

Con grandi pesi, notevoli forze in gioco e notevoli costi, il sistema di recupero dei grandi modelli non può più basarsi sugli stessi criteri semplici adottati per i piccoli, e deve essere calcolato in modo simile a quelli realizzati per i missili reali o per il recupero di materiale e personale.
L'unico sistema di recupero efficace per questi modelli è il paracadute, quindi nelle descrizioni successive ci riferiamo esclusivamente ad esso.

Apertura controllata e non-controllata

Una distinzone importante tra i sistemi a paracadute è quella tra apertura controllata e non-controllata.
Normalmente il paracadute dei piccoli modelli viene espulso nel flusso d'aria in modo casuale, senza alcun controllo sulla sequenza di apertura. Con questo metodo il paracadute si apre improvvisamente creando un sforzo sulle funicelle, sulla shock cord e su se stesso, tanto maggiore quanto maggiore è l'area del paracadute.

I modelli che vanno da 250 gr a circa un chilo possono ancora utilizzare questo sistema di recupero non controllato simile a quello usato dei modelli piccoli, purchè realizzato con materiali più robusti. Il paracadute diventa in nylon, così come le sue funicelle, per la shock cord si utilizzano cordini in nylon o kevlar, e l'attacco del paracadute alla fusoliera è di solito un occhiello a vite fissato all'anello di centraggio superiore del supporto motore.

Ma se un paracadute con diametro maggiore di un metro e mezzo viene espulso in questo modo, si genera una forza di trazione che può arrivare facilmente ai 500 Kg. Con sforzi di questo genere è pressochè certo che le funicelle o il paracadute si strapperanno. In questi casi è necessario passare ad una apertura controllata.
Lo scopo dell'apertura controllata è evitare che il paracadute si gonfi in modo improvviso ed eserciti uno strappo eccessivo sulle funi e sulla sua stessa tela. Un buon sistema di recupero mantiene una tensione continua lungo il paracadute e le funicelle per evitare il "fluttering" ovvero lo sbattimento della tela nel vento che causa attorcigliamenti e danni alla calotta.

Il più semplice modo per realizzarla è detto "lines first" ovvero "prima le funicelle". Il sistema si basa sul fatto che la forza di strappo può essere limitata se le funicelle vengono distese completamente prima che il paracadute si gonfi. In questo modo il paracadute è costretto ad allargare le funicelle nel gonfiarsi e questo sforzo evita l'apertura istantanea.

Clicca per ingrandire

Il sistema "lines first" viene realizzato espellendo un peso o un coperchio che estrae un paracadute pilota ("drogue") che a sua volta estrae il paracadute principale racchiuso in una tasca di tessuto ignifugo ("deployment bag"). Questa tasca è fatta in modo che le funicelle vengano liberate progressivamente e possano distendersi prima che la calotta si apra (vedi oltre). L'espulsione del drogue avviene lanciando un peso che se lo trascina dietro ("drogue gun") oppure lanciando il paracadute stesso avvolto nella sua sacca ("drogue mortar"). Il sistema "drogue gun" può sembrare raramente applicato in modellismo spaziale ma in realtà l'espulsione dell'ogiva che si trascina dietro il paracadute non è altro che la versione modellistica di questo sistema.

Clicca per ingrandireUn altro sistema di apertura controllata è detto "reefing", e consiste nel tenere raggruppate le funicelle tramite un cavo in modo che la calotta resti quasi chiusa finchè la velocità non è scesa sotto un certo limite. L'allentamento del cavo, e quindi l'apertura completa del paracadute, viene effettuato con sistemi vari che sono generalmente troppo complessi per le applicazioni modellistiche. La ricerca di una soluzione pratica ed affidabile per realizzare il reefing anche in campo modellistico è un campo di ricerca aperto.



Stabilità dei paracadute

Il semplice paracadute circolare che si usa per i piccoli modelli non è la forma più efficiente. Per le sue caratteristiche di apertura irregolari e per la tendenza ad oscillare non può più essere utile per modelli di grandi dimensioni anche se in modelli di dimensioni, pesi e performance intermedie - attorno ai 500-800 gr - il paracadute circolare viene ancora usato per la sua semplicità.

La stabilità di un paracadute è la tendenza a tornare in posizione centrale quando sottoposto ad oscillazioni Si vedono spesso modelli spaziali appesi al loro paracadute che oscillano violentemente avanti e indietro. I peggiori in questo senso sono proprio i paracadute piatti circolari, che hanno un campo di oscillazione di +/- 40 gradi. A causa della loro instabilità quando superano i 25 gradi di oscillazione vengono riportati alla posizione di 25 gradi senza tornare al centro. I paracadute più stabili sono i paracadute ad X (cruciformi) che oscillano entro un arco di pochissimi gradi. Nei paracadute piatti circolari, un foro apicale di area pari al 5-10% della superficie totale può ridurre l'effetto pendolo in quanto l'aria che gonfia il paracadute può sfuggire da esso e non più ripetutamente dai bordi del paracadute.

L'aspetto realmente negativo delle oscillazioni è la velocità trasversale del modello quando tocca terra. Se è troppo alta il modello picchierà con le pinne sul suolo e anche se la sua velocità di discesa è bassa potrà danneggiarsi.

Dimensionamento del paracadute

Per i modelli grandi non è più sufficiente un semplice calcolo approssimativo dell'area come abbiamo fatto coi modelli piccoli. E' necessario calcolare con accuratezza le forze che vengono realmente applicate al paracadute e ai suoi cavi per evitare danni al paracadute stesso, al modello, e ad oggetti a terra.
Per calcolare l'area del paracadute, e quindi il suo diametro, è necessario conoscerne la forza frenante (resistenza) e stabilire la velocità di discesa.

Forza frenante - Si applica la consueta equazione della resistenza utilizzata in aeronautica:

(1) Ff=C*A*(r/2)*v2

Ff = Forza frenante in Newton [N]
C = Coefficiente di resistenza
A = Area del paracadute[m2]
v = Velocità di discesa [m/s]

r = densità atmosferica [kg/m3] (1,225 kg/m3 al livello del mare, 1,121 kg/m3 a 1000m)

La tabella A riporta il coefficiente di resistenza C per ogni tipo di paracadute. Purtroppo è molto difficile conoscere i dati necessari dai costruttori di paracadute quindi bisogna utilizzare i dati di questa tabella che provengono da prove sperimentali realizzate da USAF, US Navy e da centri di ricerca americani. Fortunatamente le prove sono state fatte in gran parte con paracadute di dimensioni simili a quelle adatte a noi quindi la tabella fornisce valori molto vicini a quelli reali.

Tabella A
Tipo paracadute
C
Cx
Ang. oscillazione
Circolare piatto
0,75 - 0,85
1,7
+/-10° - +/-40°
Conico
0,75 - 0,90
1,8
+/-10° - +/-30°
Cruciforme
0,60 - 0,85
1,1 - 1,2
0° - +/-3°

Cx = Coefficiente della forza di apertura (vedi oltre)

fonte : Theodore W.Knacke - Parachute Recovery Systems Design Manual, 1992, Tavola 5-1, pagina 5-3.

Una discesa stabile, a velocità costante, si realizza quando la forza frenante del paracadute è pari alla forza peso del carico trasportato.

Il calcolo applicato in scala reale prevede che la resistenza del carico si vada a sommare a quella del paracadute, e che la forza peso sia la somma di quella del carico e del paracadute stesso. Per le nostre applicazioni la resistenza del carico si può trascurare, ma volendo si può considerare la somma dei pesi del carico e del paracadute.
Calcoliamo la forza peso del carico riferendoci al solo razzo, ma il calcolo non cambia se si inserisce il peso dell'insieme razzo-paracadute:

Fp = m*g

Fp = forza peso [N]
m = peso del modello (o del modello + paracadute) [ kg ]
g = 9,81 m/s2 (accelerazione di gravità)

Combinando le due equazioni precedenti si ha:

Vd=RADQ((2*m*g)/(A*C*r))

Vd = velocità di discesa [m/s]

La velocità di discesa che rappresenta un buon compromesso tra una discesa lenta ed una limitata deriva è compresa tra 10 e 20 km/h (da 3 a 5 m/s). 3 m/s è una velocità bassa che si può utilizzare per modelli piccoli e/o fragili, mentre 4 o 5 m/s è la velocità utilizzata normalmente per i modelli di grandi dimensioni ed high power.

Inserendo la velocità Vd nell'equazione precedente e risolvendo per A si ricava l'area necessaria per il paracadute:

A=(m*g*2)/((Vd2)*r*C)

dato che A=(D/2)2*p , ovvero A=(D2/4)*p, la formula può diventare:

D=RADQ((8*m*g)/(Vd2*r*C*p))

D = Diametro paracadute in metri

Uso del paracadute cruciforme (X-type) - I calcoli descritti sopra sono riferiti a paracadute circolari, conici o piatti. Se si utilizza un paracadute a X come drogue o come principale bisogna tenere conto che la sua area non si calcola come quella di un paracadute circolare.

Normalmente i paracadute a X hanno un diametro (Dx) pari a tre volte il lato minore (L) di ognuno dei due bracci. La loro area quindi è:

Ax=5*L2

e conoscendo l'area il lato L si calcola con:

L=radq(Ax/5)

Il diametro di un paracadute a X è 1,2 volte quello di un paracadute circolare della stessa area, mentre l'area di un paracadute a X è 0,7 volte quella di un paracadute circolare dello stesso diametro.
Se userete un paracadute ad X dovrete utilizzare queste indicazioni in tutti i calcoli per il dimensionamento.

Forza di apertura - Generalmente si assume che un modello spaziale salga in verticale riducendo la velocità constantemente fino al punto in cui questa Ŕ pari a zero e a questo punto viene espulso il paracadute. In realtà non succede quasi mai così.
Tutti i modelli di grandi dimensioni iniziano a inclinarsi in prossimità dell'apogeo, seguendo una traiettroia curva e quindi mantenendo sempre una certa velocità. La curva Ŕ più o meno accentuata a seconda della forza del vento e della velocità del razzo. Un sistema di recupero sicuro deve essere in grado di reggere entro un ampio campo di velocità. Come regola generale per modelli di grandi dimensioni si dovrebbe progettare un sistema che resti integro anche se la velocità alla quale viene espulso è di 200 o 300 Kmh.

Perciò dopo aver calcolato le dimensioni del paracadute, è necessario calcolare quanta forza eserciterà al momento della apertura per poter valutare se la resistenza dell'intero sistema è sufficiente. La forza o shock di apertura dipende dal tipo di paracadute usato: il paracadute piatto circolare sviluppa shock di apertura molto alti, mentre il paracadute a croce è quello che sviluppa gli shock meno forti.

Il Coefficiente della forza di apertura Cx (rif. tabella A) è il valore che indica la differenza tra la forza di apertura istantanea e la forza frenante a velocità costante quindi la formula per calcolare la forza di apertura è:

Fs=Ff*Cx

Fs =Forza di apertura (shock)

includendo la formula (1) precedente si ottiene

Fs=C*A*(r/2)*v2*Cx

Quindi - per es. - un paracadute piatto circolare genera uno shock di apertura pari a 1,7 volte la sua forza frenante.
Tutto il fascio funicolare del paracadute, il cavo di tenuta e i suoi attacchi dovranno resistere a questa forza. Da questi calcoli deriva che in base alla velocità raggiunta dal modello le forze possono arrivare facilmente ad alcune centinaia o migliaia di Newton anche con paracadute relativamente piccoli.
Bisogna anche considerare che il coefficiente Cx si può applicare solo in caso di apertura controllata. Con una apertura non controllata le forze sono molto maggiori.

Da questi calcoli si capisce che la semplice espulsione non controllata del paracadute principale può essere utilizzata solo con modelli abbastanza leggeri che usano paracadute piccoli. Quando il peso richiede un paracadute grande non ci sono altre alternative che una espulsione a più stadi dove un piccolo paracadute pilota può essere espulso anche a grande velocità perchè genera shock di apertura gestibili. Il paracadute pilota abbasserà la velocità del modello ad un valore che potrà essere sopportato dal paracadute principale purchè si apra in modo controllato.
Per i calcoli relativi al paracadute pilota si può utilizzare una velocità di discesa di circa 40-50 Kmh (10-15 m/s)

Sistema di recupero a due stadi (doppia espulsione) - Il sistema prevede che un primo paracadute di piccole dimensioni venga espulso all'apogeo in modo da sviluppare una prima azione frenante. Quando l'insieme ha raggiunto una velocità definita viene espulso il paracadute principale. I sistemi a doppia espulsione si realizzano in congiunzione ad altimetri e vengono applicati anche solo per ridurre la deriva del modello a causa del vento (vedi Doppia espulsione).

Shock cord

Una volta calcolato il paracadute non bisogna dimenticare di calcolare la resistenza che deve avere il cavo che lo tiene legato al resto del razzo.
La shock cord (cavo di tenuta o fune di vincolo) serve per due funzioni: deve sopportare la forza frenante del paracadute e deve frenare l'ogiva o la parte che viene espulsa e trattenerla al resto del razzo.
Mentre nei piccoli modelli si può ancora usare un cavo elastico senza eccessivi problemi, in modelli del peso di due o tre chili l'elastico Ŕ da evitare perchè ha un carico di rottura troppo basso.
Ultimamente si sta affermando l'uso del cavo in kevlar tubolare, in particolare grazie alla caratteristica di resistenza al calore e la altissima tenacia.
Questo materiale però è per sua natura totalmente non elastico. L'ogiva quindi viene fermata molto violentemente e sviluppa dei tremendi carichi istantanei che se anche vengono sopportati dal kevlar possono rompere gli attacchi della shock cord alla fusoliera o all'ogiva.

I materiali adatti per la shock cord dei grandi modelli sono sostanzialmente due:

Nylon Tubolare - E' probabilmente il materiale più adatto. Il nylon tubolare è tessuto a forma di tubo che viene appiattito come una fettuccia. Schiacciando con le dita si rivela la struttura tubolare ma appena si toglie la pressione il materiale ritorna alla forma piatta originale.
È due volte più di più robusto della stessa larghezza di una tessitura non-tubolare pur avendo quasi lo stesso spessore.

Caratteristiche nylon tubolare
Larghezza
Resistenza (N)
Peso al metro
15 mm
10000
25 gr
25 mm
18000
35 gr
50 mm
30000
75 gr

Il nylon tubolare ha un elevato carico di rottura e cosa molto importante ha un leggero allungamento che dipende dal tipo di tessuto e dal fabbricante ma si aggira quasi sempre attorno al 5%.

Fune dinamica - E' una alternativa al nylon tubolare. Questo tipo di fune è progettato specificamente per assorbire i carichi dovuti a scossa istantanee. Non è classificato in base alla sua resistenza ma in base alla forza di strappo che può sopportare prima di allungarsi oltre un limite determinato. Questo tipo di cavo più che spezzarsi si allunga, ma senza rimbalzare perchè l'allungamento è limitato a circa il 3-5%, come il nylon tubolare. Anche se non sembra molto, uno stiramento del 5% riduce significativamente la forza di strappo. Lo svantaggio principale della fune dinamicaè che non è disponibile in diametri minori di 8-10 mm, e che a causa della sua sezione rotonda può tagliare il bordo della fusoliera nel caso venga premuta contro di essa da una trazione troppo forte.

L'unico svantaggio del nylon è la cattiva resistenza al calore, che tuttavia può essere compensata avvolgendolo con una manica in Nomex o realizzando un sistema di filtraggio dei gas come viene utilizzato nei modelli Aerotech. Un'altra soluzione è unire una sezione di kevlar che resterà all'interno della fusoliera, ad una sezione molto più lunga di nylon che costiturà la vera shock cord. In questo modo si uniscono i vantaggi dei due materiali.

Per modelli midpower o high power la shock cord dovrebbe essere lunga almeno 5 volte la lunghezza del modello.

Calcolo della forza sulla shock cord

Per un corretto dimensionamento della shock cord è necessario calcolare la velocità dell'ogiva e di conseguenza la forza esercitata quando viene espulsa.
La forza minima alla quale deve resistere la shock cord è quella posseduta dall'ogiva in seguito all'espulsione:

F=Mo*a

Mo = massa dell'ogiva [kg]
a = accelerazione subita dall'ogiva [m/s2]

ma siccome a=v2/2*ss (ss=allungamento della shock cord) la formula precedente diventa:

F=Mo*v2/2*ss

v = velocità raggiunta dall'ogiva [m/s]

La velocità si ricava con:

v = RADQ((2*s*P*A)/Mo)

s = spazio percorso dall'ogiva sotto pressione (lunghezza della spalla) [m]
P = pressione generata dalla carica di espulsione (da 35.000 a 130.000 pa = da 0,35 a 3 bar)
A = Area della base dell'ogiva [m2]
Mo = massa dell'ogiva [kg]

E' consigliabile dimensionare la carica di espulsione in modo che la velocità dell'ogiva sia compresa tra 10 e 20 m/s (vedi Cariche di espulsione)

Applicando le formule descritte su una ogiva dal peso di 1 Kg che viene espulsa ad una velocità di 15m/s, legata ad una shock cord di 5 metri che abbia un allungamento del 5% (= 0,25 m) si ottiene un valore di 450 Newton, che corrisponde alla forza non trascurabile di oltre 45 kg.
Talvolta si sostiene che è meglio abbondare con la carica di espulsione in modo che il parcadute sia sicuramente espulso. Se si applicasse questo criterio con i dati di cui sopra raddoppiando, per esempio, la velocità di espulsione dell'ogiva si otterrebbe una forza di 1800 Newton, oltre 180 kg! La maggior parte delle shock cord e degli ancoraggi non sarebbero mai in grado di reggere queste forze.
Per questo motivo con modelli di grandi dimensioni è di estrema importanza fare test a terra anche dopo aver calcolato la carica di espulsione. Questi numeri mostrano che con cariche di soli 1 o 2 grammi le forze generate sono di tutto rispetto.

Quando i modelli assumono dimensioni davvero grandi (diecine di kg) diventa necessario separare il modello in due parti perchè difficilmente si potrà trovare una shock cord in grado di reggere gli sforzi in gioco.

Tre tipi di cavo in nylon: nylon tubolare da 19 mm (allungamento 5%), nylon tubolare da 15 mm (allungamento 3%), funicella da alpinismo da 4 mm (allungamento 3%)

Costituzione dei paracadute
Paracadute piatto circolare

I paracadute per modelli grandi sono realizzati in tessuto. In pratica non esistono alternative al nylon "ripstop" (antistrappo), in pesi che vanno da 1,1 a 1,9 oz./yd2. Questo tessuto è leggero, morbido e robusto e quindi soddisfa le esigenze di piegatura e pesi tipiche dei nostri modelli.
Le funicelle sono sempre in nylon intrecciato di vario spessore, o in fettuccia di nylon, cucite alla calotta. Con l'aumentare delle dimensioni del paracadute le funicelle vengono cucite al disopra della calotta lungo tutto il diametro in modo da avere una robustezza ancora maggiore.

Paracadute conico.
Gli spicchi sono trapezoidali.

Esistono moltissime forme diverse di paracadute, alcune decisamente esotiche e molto complesse adatte per usi particolari. In modellismo se ne usano solo alcune per motivi di realizzazione pratica. Le forme più utilizzate sono la conica e la cruciforme. I primi sono realizzati cucendo assieme degli spicchi di forma trapezoidale. Qualcuno usa il termine "ferzi" per definire gli spicchi, ma si tratta di un termine inappropriato perchè definisce parti di vele da barca e non spicchi (o pannelli) di paracadute.

Paracadute SkyAngle

Negli ultimi anni si sono diffusi dei paracadute con forme a cupola particolari (SkyAngle e Rocketman) che hanno un comportamento intermedio tra i paracadute conici e quelli cruciformi. Sono studiati apposta per i nostri usi, hanno un basso shock di apertura e un valore di oscillazione molto basso.

Il paracadute cruciforme o a "X", inventato poco dopo la Seconda Guerra Mondiale, ha caratteristiche di grande stabilità, bassissimo valore di oscillazione, basso coefficiente di apertura ed un alto coefficiente di resistenza aerodinamica che aumenta al descrescere della velocità di di discesa. Questo paracadute ha la tendenza a ruotare su se stesso, e per questo motivo il collegamento al resto del sistema di recupero va fatto tramite un connettore girevole per evitare che le funicelle si attorciglino e riducano l'apertura del paracadute.

Altri paracadute molto efficienti sono i triconici (che assumono una forma vicina a quelli ad un quarto di sfera) e gli anulari (costituiti da un solo anello di tessuto), ma sono più complessi da realizzare rispetto ai conici semplici e i vantaggi che offrono non sono così determinanti per le nostre applicazioni.

Contrariamente a quanto molti credono o affermano, la tradizionale forma semisferica non è affatto la migliore anzi, è considerata da tempo obsoleta (T.Knacke - Parachute Recovery System - Tavola 5-1, pagina 5-3). Rispetto alla forma emisferica, la forma "a quarto di sfera" (metà altezza rispetto alla emisferica) presenta le stesse caratteristiche con un ingombro e peso quasi dimezzato. Per quanto esistano produttori di paracadute emisferici per modellismo, le caratteristiche di questi non sono paragonabili a quelle dei paracadute conici.

La realizzazione casalinga dei paracadute in tessuto è possibile in linea di massima, disponendo di attrezzatura per cucire e capacità manuale. Il problema maggiore è la reperibilità del tessuto. Il nylon "ripstop" adatto non è facilmente reperibile. Si trova con facilità quello utilizzato per aquiloni, che ha la stessa denominazione ma è siliconato, non poroso e troppo rigido. Lo si riconosce facilmente perchè dà la sensazione della carta quando lo si tocca e lo si piega.

Lunghezza delle funicelle - Per via sperimentale (USAF - Lakehurst, NJ - 1949) si è rilevato che la lunghezza delle funicelle influisce sulla resistenza del paracadute. I dati sperimentali rilevano che la lunghezza ideale è compresa tra 1,1 e 2 volte il diametro del paracadute. Lunghezze inferiori riducono sensibilmente il coefficiente di resistenza, mentre lunghezze superiori non portano pressochè alcun miglioramento.

Funicelle cucite con fettuccie di rinforzo in un paracadute di grandi dimensioni

Piegatura paracadute - Un ottimo tutorial su come piegare i paracadute in nylon è disponibile sul sito Public Missiles Ltd. Una versione tradotta in italiano è scaricabile qui

Deployment bag

La "deployment bag" Ŕ un componente importante di un buon sistema di recupero. Una deployment bag tiene ben impacchettato il paracadute, lo protegge dalla carica di espulsione e permette una apertura controllata.

Le deployment bag a volte sono semplificate e ridotte ad una una semplice tasca (sleeve - manica) in materiale ignifugo (Nomex®). In queste tasche di solito il paracadute Ŕ messo in modo casuale e le funicelle non sono avvolte seguendo uno schema particolare.

La funzione principale delle deployment bag vere e proprie è di trattenere le funicelle e permettere il loro dispiegamento ordinato e frenato prima che la calotta del paracadute si apra (metodo "lines first"). La deployment bag resta legata al paracadute e si muove nell'aria al di sopra di esso durante la discesa.

Le deployment bag più sofisticate ed efficaci utilizzano delle asole nelle quali vengono inserite le funicelle del paracadute che a loro volta tengono chiuso il "coperchio" della borsa stessa. Quando il paracadute pilota estrae la deployment bag, le funicelle vengono tese e si sfilano dalle asole mantenendo una tensione costante sull'intero sistema. Quando le funicelle sono completamente distese il paracadute viene estratto dalla sacca e può gonfiarsi solo nel momento in cui è completamente libero.

Nella foto a fianco si vede il paracadute pilota (un semplice piatto circolare) attaccato alla deployment bag che a sua volta è fissata al paracadute principale (prodotto da Rocketman). Da notare che le funicelle del paracadute principale sono solo quattro e sono realizzate con un nylon tubolare da qualche millimetro di larghezza.

 

Calcolare il fattore di carico del paracadute

Volendo si può calcolare a quale forza di strappo può resistere la tela del paracadute. Non esistono però metodi precisi per calcolare il fattore di carico di una cupola gonfia di aria. Il metodo utilizzato comunemente consiste in una analogia con un sistema cilindrico del quale si calcola la resistenza delle pareti. Le sezioni della cupola di un paracadute possono essere paragonate alle pareti del cilindro.
La formula per il calcolo è:

Tc=((Fo/g)/Dp)*DS

Tc = resistenza del materiale [kg/cm]
Fo = Forza agente sul paracadute [N]
g = 9,81 m/s2 (accelerazione di gravità)
Dp = Diametro paracadute gonfiato [cm] (= Diametro nominale x 0,93-0,95 in caso di paracadute conici)
DS=Fattore di sicurezza (1,85 adatto per i nostri modelli)

Resistenza nylon ripstop
1,1 oz/yd2
7,2 Kg/cm
2,2 oz/yd2
16,2 Kg/cm

Agganci

Ogni aggancio o collegamento posto lungo la catena paracadute-funicelle-shock cord-fusoliera deve essere in grado di resistere agli stessi sforzi calcolati per l'intero sistema di recupero. I sistemi per collegare fra loro le varie parti sono diversi:

Quick-links ovali - Sono anelli di catena con un manicotto a vite di lato che permette di aprirli per inserire il cavo. Sono molto utilizzati nei modelli di grandi dimensioni. Funzionano estremamente bene per il fissaggio delle shock cord agli ancoraggi sulla fusoliera (occhielli a vite o agganci ad "U"). Un problema si presenta quando la shock cord ha una larghezza di 2,5 cm o più perchè sotto carico la shock cord viene premuta ad una estremità dell'anello schiacciandosi e riducendo un pò la sua resistenza.

 

Quick links triangolari - Questi anelli sono simili ai precedenti ma di forma triangolare. Il vantaggio è che sotto carico la shock cord resta piatta contro un lato del triangolo e distribuisce il carico lungo tutta la sua larghezza.

Nodi - Se fatti correttamente i nodi sono un metodo di collegamento affidabile. Esistono molti nodi differenti, ognuno con un uso specifico. I nodi permettono una versatilità del cablaggio perchè permettono di slegare e rilegare in configurazioni diverse, ma aggiungono peso e volume poco desiderabili in uno spazio che spesso è già ristretto. Un altro svantaggio è che indeboliscono la shock cord. Una buona regola pratica deve presupporre che qualsiasi nodo indebolisca la shock cord del 50%. Anche se non è sempre così, questo è un margine di sicurezza che è bene applicare.

Cucito - Cucire ad anello le estremità di una shock cord è il sistema migliore. La cucitura andrebbe fatte piegando due volte l'estremità da cucire ed usando un filo molto robusto. Una cucitura professionale non sempre è disponibile e si può sostituire con una cucitura a rettangolo ed una a croce.

Agganci alla fusoliera
Nei grandi modelli l'aggancio della shock cord è realizzato con anelli a vite o cavallotti ad U (U-bolts) avvitati all'anello di centraggio più anteriore. Nel caso di carichi molto grossi si utilizzano due o tre agganci ed altrettante shock cord che convergono in una unica.

Clicca per ingrandire
Anelli a vite tipo forgiato e tipo piegato

Per modelli di peso compreso tra i 500 gr e i due chili, un sistema efficace è incollare una estremità della shock cord lungo il tubo motore per una lunghezza di 10 o 15 centimetri. Invece di incollare una estremità della shock cord si può incollare una porzione di cavo in kevlar tubolare al quale collegare la shock cord vera e propria.

 

 

Moschettoni girevoli - Sono utilizzati per cinghie di vario tipo e si trovano facilmente in vendita presso le ferramenta. Sono utilizzati per l'aggancio del paracadute che in questo modo può girare liberamente. Questo tipo però è adatto per modelli fino ad un paio di chilogrammi. Per pesi superiori bisogna usare dei prodotti più robusti, in acciaio e con cuscinetto a sfere.

 

Shear Pins (perni di sicurezza)

I perni di sicurezza si stanno utilizzando sempre più più frequentemente come mezzi sicuri per trattenere l'ogiva (o il vano di carico) alla struttura del velivolo durante il volo. Con un sistema di recupero a due stadi (vedi Doppia espulsione) il paracadute principale viene espulso dopo il paracadute drogue (pilota). Se il drogue si apre in leggero anticipo, creando una forza frenante maggiore ed improvvisa, l'ogiva o la parte che chiude lo scompartimento del paracadute principale potrebbero sfilarsi. Il paracadute principale perciò sarebbe libero di uscire, ma sarebbe il momento meno adatto.

Il metodo tradizionale per evitare questo inconveniente è aumentare l'attrito fra le parti avvolgendo del masking tape attorno alla parte che si sfila. Ma questo metodo non garantisce una costanza dell'attrito ed è difficile da dimensionare con esattezza.
Per esempio, se il modello resta al sole per un certo tempo, il riscaldamento dilata i pezzi o modifica le caratteristiche del nastro, che dovrà essere aggiunto o tolto. In caso di bassa temperatura succede l'opposto e il nastro ha la pessima abitudine di spezzarsi al freddo e diventare estremamente noioso da applicare.

I perni di sicurezza permettono di tenere unite le parti del modello saldamente fino a quando la carica di espulsione non le separa, e una volta inserite l'unione non è influenzata dalla temperatura o dai capricci del nastro.
Normalmente sono costituiti da una bacchetta in plastica capace di spezzarsi facilmente, inserita attraverso due fori corrispondenti, uno sulla fusoliera e l'altro sulla parte che si deve separare.

Come materiale si utilizzano bacchette a sezione tonda o quadrata di stirene, che si trova in diecine di misure diverse nei negozi di modellismo e serve per la realizzazione di piccole parti di modelli in plastica o plastici dei trenini. Viene chiamato anche "plasticard" e la marca più nota è la Evergreen.
Un altro materiale utilizzato sono piccole viti in nylon che si trovano anch'esse nei negozi di modellismo o in qualche centro fai-da-te ben fornito.

La forza della carica di espulsione deve essere sufficiente a spezzare questi perni, ma non è necessario aumentare la carica in funzione dei perni. Piuttosto bisogna calcolare i perni in funzione della forza di espulsione che si desidera.

Procedimento
Descriviamo il modo di realizzare i perni di sicurezza per trattenere l'ogiva. Il metodo non cambia nel caso di vani di carico:

 

1 - Procuratevi un tubetto di ottone del diametro interno di 1,5 mm. Praticate un forellino di diametro pari a quello esterno del tubetto di ottone che passi attraverso la fusoliera e la parete dell'ogiva. Il foro dovrebbe essere praticato circa a metà altezza della spalla dell'ogiva, che è spesso è a circa circa 3 - 4 cm sotto l'estremità della fusoliera.

 

 

2 - Inserite un pezzetto di tubetto di ottone in entrambi i fori fissandolo con epoxy o cianoacrilato. Quando la colla è asciutta tagliate le parti in eccesso del tubetto e limate in modo che sia a filo con la superficie e chi i suoi bordi interni siano affilati.

3 -Tagliate 1 cm di bacchetta in stirene del diametro di 1,5 mm ed inseritelo nel tubetto di ottone tenendo ogiva e fusoliera allineate in modo che lo stirene penetri nel forellino praticato sull'ogiva. Ora le due parti sono collegate stabilmente. Per tenere al suo posto il pezzeto di stirene potete usare un piccolo pezzo di nastro adesivo messo sopra il foro.

All'atto dell'espulsione il perno è tagliato dai bordi taglienti del tubetto di ottone. E' molto importante calcolare la carica di espulsione in modo che generi la forza necessaria.

Numero di perni - Devono essere sempre almeno due, uno solo potrebbe far alzare una sola parte della sezione che si separa e farla incastrare nella fusoliera. Il loro numero dipende comunque dalla massa dell'ogiva e dal diametro della fusoliera.

Alcuni valori trovati con la pratica (perni da 1,5 mm):

    fino a 3" (75mm): 2 perni
    4" (100 mm): 2-3 perni
    6" (150 mm): 3-4 perni

Consiglio: se dovete mettere diversi perni, è bene completare il primo, unire le due parti e praticare i fori per gli altri. In questo modo otterrete un allineamento perfetto.

Verificate sempre la tenuta dei perni con un test a terra (anche se l'uso dei perni di sicurezza non richiede una maggiore quantità di polvere). Deve essere possibile sparare le due parti prendendo l'ogiva in mano e dando un colpo secco.

Riassunto

I passi da seguire per dimensionare il sistema di recupero si possono riassumere così:

  • Specificare la massima velocitÓ alla quale deve reggere il sistema (velocità minori di 200 kmh vanno bene per modelli non oltre i 3 kg)
  • Calcolare l'area del paracadute in base alla velocità di discesa voluta (tipicamente 4,5 m/s)
  • Calcolare la forza di apertura del paracadute alla massima velocità prescelta.

Se la forza è troppo alta sarà necessario progettare un sistema con paracadute pilota che estrae il principale, oppure un sistema a doppia espulsione. In questo caso bisognerà:

  • Calcolare le dimensioni del paracadute pilota in modo che regga alla massima velocità stabilita e rallenti il modello ad una velocità di circa 10 -15 m/s.
  • Calcolare la forza di apertura del paracadute principale sulla base della velocità di discesa col paracadute pilota.

In seguito, i passi da eseguire in qualunque caso:

  • Calcolare la carica di espulsione (vedi Cariche di espulsione)
  • Calcolare la resistenza della shock cord

Seguendo questa procedura si può essere certi che che il sistema di recupero Ŕ ragionevolmente dimensionato e fornisce un margine di sicurezza sufficiente.

La spesa per un sistema progettato bene, che abbia un buon margine di sucurezza può arrivare ad eguagliare quella di tutto il resto del modello. Ma questa spesa Ŕ molto importante. Costruire e lanciare un modello di grandi dimensioni può essere facile per molte persone con una con una minima abilitÓ costruttiva, mentre recuperarlo in modo appropriato Ŕ davvero un'arte.
In Paesi densamente abitati come i nostri il sistema di recupero Ŕ ancora più importante per evitare voli balistici che colpiscano cose o persone.

Consigli

Attrito dell'ogiva - Per avere una misura di quanto debba essere l'attrito giusto tra ogiva (o vano di carico) e fusoliera bisogna avvolgere tanto nastro adesivo quanto basta per poter sollevare il modello tenendolo per l'ogiva senza che si sfili. Se agitando il modello lìogiva non viene via significa che l'accoppiamento è troppo stretto.

Acciaio inox - Tutte le viterie e parti metalliche del sistema di recupero dovrebbero essere in acciaio inox. Non solo l'acciaio è più resistente ma essendo inox regge meglio ai gas dell'espulsione e si pulisce con maggiore facilità. Se potete, scegliete minuterie in inox di tipo marino che sono le migliori e più resistenti.